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Abstract

We study the zero-temperature magnetization of small clusters in which the
atoms are coupled by an isotropic Heisenberg antiferromagnetic interaction.
We obtain either a full or partial energy spectrum. From this we obtain the
magnetization curves as a series of steps for finite S. Each step is characterized
by the space group symmetry of the cluster and many different representations
may be present. We then investigate the classical limit, S — oo, in which the
magnetization curves are typically piecewise smooth curves or straight lines.
We find two basic types of behaviour, depending on whether or not the steps
are characterized by a single or many different representations. This latter case
is associated with extra hidden symmetry.

1. Introduction

Symmetry is an important concept in physics. In cluster physics the symmetry properties of
clusters can be used to simplify the problem and so, for instance, to reduce computation times.
In this paper the main interest is the symmetry of the ground state of small antiferromagnetic
(AFM) Heisenberg clusters and how it changes as a function of external field. We are also
interested in the limit of infinite spin length, in which case we obtain classical AFM Heisenberg
systems.

In a recent paper [1] we considered the magnetization of eight different clusters of
antiferromagnetically coupled ions as a function of the applied magnetic field. The eight
clusters have octahedral, icosahedral, fcc and hcp structures and various sizes. The exchange
interaction is nearest-neighbour isotropic Heisenberg. We considered both the quantum case
with § = 1/2 and also the classical case for all these systems.

Although there are some broad similarities between the quantum and classical cases the
detailed behaviour is very different. At zero temperature the quantum systems show stepped
magnetization curves in which the step width is sometimes constant and sometimes varies in
a non-uniform way. (The normalized step height is 1/(2S) or occasionally a multiple of this.)
The magnetization curve of a classical system is a piecewise smooth curve or a straight line.
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Figure 1. The octahedron, showing the labelling of the sites.

Itis to be expected that, if we study quantum systems in which the spin S is increased, then
in the limit S — oo the classical result should be obtained as the height of the steps tends to 0.
However, for the systems we studied numerically in the earlier paper, we were unable to proceed
beyond S = 5/2 because the size of matrix to be diagonalized becomes too great. For the
largest clusters we could only use spin lengths up to S = 3/2 and even then it was only possible
to obtain the eigenvalues and corresponding eigenstates for the largest values of magnetization.

In this paper we shall mainly consider smaller clusters, up to the octahedron shown in
figure 1, with a brief mention of larger clusters.

For several of these we shall obtain the magnetization curves at zero temperature for
general S and hence we shall be able to study the limit § — oo. For clusters larger than
the octahedron we are only able to study finite S by directly diagonalizing the Hamiltonian
numerically and obtaining the relevant eigenstates. Our main focus will be on the symmetry
of the lowest-lying states for each value of the magnetization M (the z component of the total
spin), which are the only relevant states for the magnetization curve at zero temperature.

The Hamiltonians studied here have extra symmetries in that the space operations, which
act on the cluster by permuting the sites and form a point group, are independent of the
operations which rotate the spins. The latter form the full rotation group Rj3 in the absence of
the field and R, about the field axis when B # 0. This is the equivalent of the ‘spin-space’
group studied earlier [2] adapted to systems with point symmetry. It means that the states of
the system can be characterized by a representation of the point group I'; and values of total
spin T and total z component M. The relevant theory of group representations is described in
many standard works, e.g. [3] or [4].

It will be found that in several of the systems studied here extra degeneracies occur when
several states of different I'; and the same or different 7 and M have the same energy. These
are due to extra symmetries hidden in the Hamiltonian, as is familiar in the degeneracies found
in the three-dimensional harmonic oscillator or Coulomb potential.

In this paper we use the notation s; for a spin of length S at site i, with z component s;.
The total spin of the cluster is written ¢ = ), s; with length T'. The z component of this is
the magnetization M = ¢*. t; refers to a particular combination of two or more spins and has
length 7} and z component z;.
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2. Pair of spin-S atoms

Although this is very simple it illustrates the general features of most of the clusters. The
Hamiltonian is

H =515, — B(s] +55)
= %[(sl +8)% — s% — s%] — B(s{ +5%)
= 1[t* — s{ — 3] — Br*
= 1[T(T+1)—25(5+ 1] — BM (D
where t = s| + s is the spin of the pair, which in this case equals the total spin. T (T + 1) is
the eigenvalue of t?and T =0,1,2,...,2S. M = t% is the magnetization of the cluster and

so —T < M < T. The lowest energy for a given M is obtained for T = M. Crossover from
M to M + 1 occurs at B given by

MM +1) = BM = (M + 1)(M +2) — B(IM + 1)

i.e. B = M + 1. Thus the magnetization curve is a series of steps of equal width 1 and height
1.

To determine the symmetry of each of the states which occur at each step we note that a
complete basis for the states with given M is the set |g, M — q), with =T + M < g < T. The
subscript b indicates a basis state.

The space group of the pair is C, with two one-dimensional representations, I'y, the
identity representation, and I';. Provided ¢ # M — g, the pair |g, M — q)», |M — q, q) can
be written in two linear combinations:

1
V2

llg, M —q)p+ M —q,q)p] with symmetry Ty

and
1
V2
If ¢ = M — g then there is a single state with symmetry I';.

Starting with the maximum M = 25, there is only one state | S, S);, so the symmetry is I';.
This is clearly an eigenstate with 7 = 25, M = 2§ and energy E = S?> — 2BS. Eigenstates
will be written |7, M) without a subscript, so this is |25, 25).

For the next highest M = 25 — 1 the basis has two states | S, S — 1), and |S — 1, S); with
linear combinations with symmetries I'y and I';. The allowed values of T are 2S5 and 25 — 1,
so the eigenstates will be 25,25 —1) and |25 — 1, 25 —1). Since T is a good quantum number
the first of these is obtained from |25, 25) by operating with the lowering operator ¢~ and must
have the same symmetry I';. The energy is S — B(2S — 1). The other state, |25 — 1,25 — 1)
must have symmetry I'; and it has a lower energy S(S —2) — B(2S — 1) since T is lower. In
conclusion, the step on the magnetization curve with M = 25 — 1 corresponds to a state with
symmetry I',.

ItS= % there are no other steps (we consider only B > 0). For larger S the next highest
M is 2§ — 2. The basis has three elements with symmetries I'; (twice) and I'; (once). Two of
these have T > M and are obtained from the two M = 2§ — 1 states by operating with 7~ and
have the same symmetries. The remaining state with 7 = M has the lowest energy S> — 45 +
1 — B(2S — 2) and must have symmetry I';. This is the symmetry of the M = 2.5 — 2 step.

We can now continue the process and find that the symmetry of the steps alternates I';,
', as M decreases, starting with I"y at the maximum M = 2S. The final step, for 0 < B < 1,
M = 0, has symmetry I'; for 2.5 even and I'; for 2.5 odd.

llg. M —q)p — M —q, q)s] with symmetry T.
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In the limit S — oo the magnetization steps become infinitesimal and the magnetization
curve becomes the straight line M = B for 0 < B < 285, with M = 2§ for B > 2S. The
symmetry is I'; for B > 2§, but for 0 < B < 2S5 there is not a unique symmetry. Instead both
'} and I'; are present with equal weights. The actual form of the classical state in this region
is that the two spins point at equal and opposite angles to the z axis.

This result is, to our knowledge, the first full analysis of the symmetry of a classical
magnetic system in terms of the irreducible representations of the space group.

3. Triangle of spin-S atoms

Three spins arranged in an equilateral triangle with equal exchange between each pair have
the Hamiltonian

H=s51+5+5-53+53+5 — B(sj +55+53)

1 2 2 2 2 z
= 5[(s1 + 52 +53)" — 57 — 85 — s3] — B(s| +55 +53)

= 1[t’ — s] — 85 — s3] — Bf*
=TT +1)-3S5(5S+ D] — BM )

where t = s; + s, + s3 isthe total spin, T =0, 1,2,...,35,and - T < M < T.

The use of an equilateral triangle is not strictly necessary as any triangular arrangement
with equal exchange interactions will produce the same magnetization curve. However, the
equilateral triangle is the natural arrangement in this case and will enable us to characterize the
eigenstates in terms of the space group Cs, of the equilateral triangle, which is equivalent to the
permutation group acting on the three equivalent vertices. The group has six elements and there
are [5] two one-dimensional irreducible representations I'; and ', and one two-dimensional
representation I'3.

Just as for the pair, the lowest state with a given M has T = M. Crossover from M to
M+ 1occursat B =M + 1.

A complete basis is the set |a, b, ¢}, where a, b, ¢ are the z components of the three spins.
For a given M the requirement a + b + ¢ = M defines a plane with a normal in the (1, 1, 1)
direction. The requirements —S < a, b, ¢ < S define a cube centred at the origin. The plane
and the cube intersect to form a triangle with corners (S, S, M — 25), (S, M — 2S5, S) and
(M —128,8,S), provided M > S. For 0 < M < S the intersection is a six-sided figure with
corners at (S, —S, M) and its permutations. We need to find the number of points lying on
each of these plane areas and their types.

For conciseness we show only the states with a < b < c¢ explicitly in this section.

For example, for § =4, M = 7 we have

| —1,4,4),10,3,4), |1,2,4), |1, 3,3)5 12,2, 3)s

and for M =6
| —2,4,4),1—1,3,4),10,2,4),10,3,3), |1, 1,4),
[1,2,3),12,2,2)

while for M = 3 we have
| —4,3,4), | —3,2,4), | —3,3,3)p | —2,1,4), | —2,2,3)p
|—1,0,4), | —1,1,3), | — 1,2,2), 10,0, 3), |0, 1, 2),,
1,1, 1),.

Evaluation of all the states for general S, M is somewhat lengthy and is given in appendix A.
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A state with a = b = ¢ has symmetry I';. A state witha = b # c,a = c # b
or a # b = c, has three permutations which can be written in linear combinations with
symmetries I'; and I';. A state with @ # b # c has six permutations with linear combinations
with symmetries I'}, I'; and 2 x I';. (This combination forms the regular representation of the
group C3y.) Thus the complete basis for S = 4, M = 7, for example, has symmetries

3T +13) + 2(F1 + I + 2F3) =5T +2IL + 713
and for M =6
[ +3(+T3)+3(1 )+ +2003) =70 + 31, +9T75.

All the states with M = 7have T > 7. Operating on each of these with ¢~ produces a state
with the same symmetry and 7 but with M = 6. Consequently the states with 7 = M = 6
must have symmetries

2F1 + Fz + 2F3.
Hence there are 7 states in all which form the M = 6 step of the magnetization curve.

This method of finding the degeneracies and symmetries of each step is generalized to
arbitrary S, arbitrary M in appendix A. The final result is as follows.

For integer S and M < S there is a cycle of 6 steps with the following symmetries:

M = 6k 2 2kZ+T,

M=6k+1 :2kZ+T,+1};

M=6k+2 : 2kZ+T,+2T;

M=6k+3 : 2kZ+T,+20,+2I";

M=6k+4 : 2kZ+2I, + T, +3I"3

M=6k+5 : 2kZ+T,+20, +4I';
where', =T, =T if Sisevenand ', =I5, ', =T if Sisodd,and Z = "'+, +213,
the regular representation.

For S = integer +% and M < S there is a cycle of 3:

M=3k+3: T +T3+kZ

M=3k+3: T +T,+T3+kZ

M=3k+3: (k+DZ.

For M > S, putting M = 35 — n, the sequence for all S is

n = 6k  kZ + Fl
n=6k+1 : kZ+T}3
n=06k+2 : kZ+T'1+T;
n=6k+3 : kZ+T 1+ +T;
n=06k+4 : kZ+T+2I3
n=6k+5: (k+1)Z.

For large S, and in the classical limit § — oo, the steps have massive degeneracy, and
each representation is present with large multiplicity. Also we note that, for large S with M
not close to 0 or 3§, the dominant feature is a multiple of Z. Therefore we conclude that the
dominant symmetry of the corresponding classical system is defined by Z. This result reflects
the fact that the regular representation has zero character for all classes except the unit element,
where x = g, the number of elements in the group. The states represented by Z therefore are
different but equivalent for any permutation of the sites. In the classical state the spins can
have any orientation such that

'=r"=0 =M
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Figure 2. Zero-temperature magnetization curve of the § = 2 triangle, showing the symmetries
of each step. The broken line is the classical magnetization curve for a spin of this length.
The magnetization curve of the S = 1 octahedron is identical except that I'; is replaced by I'}
everywhere.

and these conditions remain satisfied by any interchange of sites 1, 2 and 3, even though the
detailed pattern is then changed to an energetically equivalent one.

It seems clear that the triangle is a rather special case in which there is additional hidden
symmetry present. This shows up in various ways. Firstly the Hamiltonian factorizes into a
simple form. Secondly each spin is coupled to each other spin, and thirdly the quantum states
which determine the ground state for a given M are massively degenerate. The dominance of
the regular representation Z is presumably also associated with the hidden symmetry.

These results have been checked numerically for many different S. The magnetization
curve for S = 2 is shown in figure 2.

4. Square of spin-S atoms

Four spins arranged in a square with equal nearest-neighbour exchange between each pair have
Cy4y symmetry. This group [5] has four one-dimensional representations I'{, I', I'; and I'y and
one two-dimensional representation I's. The Hamiltonian is
H==51-5+8 - 53+853-54+854-5 — B(s] +55+55+55)
= (81 +83) « (52 +84) — B(s{ + 55 + 55 +55)
=t -t, — B(tj +1}) 3)
where t; = s; + s3 and t; = s; + s4. This behaves as a pair of coupled spins with not
necessarily equal lengths. In fact, the lengths satisfy 0 < 71, 7, < 25 and
H =1t +t2)> —t] — t3] — B(t{ +15)
= 1[t* — t] — 5] — Br*
= %[T(T+1)—T1(T1 +1) - Th(T,+1)]— BM “4)
where t = ¢ + t, is the total spin, T (T + 1) is the eigenvalue of t?and M = 1%,
For a given T and M the lowest energy is obtained by choosing the largest values for

T\, T, namely T} = T, = 2S. All values of 0 < T < 4S5 can be obtained with this choice.
For a given M the lowest energy state has T = M so the energy is

E=L1MM+1)-452S+1)] — BM.
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The situation in these lowest states is therefore equivalent to a pair of atoms, each of spin
28, and the results are analogous to those of section 2, which are determined from the group C>.
The relationship can be seen as follows. If we treat the pairs as fixed entities there are elements
in the group C4, which leave the whole invariant; they are E, C, (about the perpendicular
axis) and 2C} (about the diagonals). These are therefore equivalent to E in C». Similarly the
other four elements interchange the pairs, and are all equivalent. The only representations with
characters which satisfy this equivalence are I'j (C4y) — ['1(C7) and I'y(Cyy) — T2(Cy).

In our numerical studies of finite S for this system we found that the representations of
the relevant states alternated between '} and I'4 in the same way as the representations of the
relevant states for the pair alternated between I'; and I';. We therefore believe that, for all S,
the magnetization steps of the square have representation I'; if M is even and I'y4 if M is odd.
Thus the symmetry of the classical system is governed by the sum of I'; and I'4, reflecting
the extra symmetry in the Hamiltonian, and giving states with fixed pairs and then the regular
representation of C».

5. Five-atom ring of spin-S atoms

The group in this case is Csy. This group [5] has two one-dimensional representations I'; and
I, and two two-dimensional representations I'; and I'y. The Hamiltonian is

H==51-5+553+53:84+54+855+85-5 — B(s7 +55+55+5; +55). 5)

This Hamiltonian cannot be factorized in the same way as the previous ones, so we cannot
obtain the representations for general S. Our numerical calculations on finite S < % systems
show the following pattern.

For M = 5S — n, the representation r is given by

n| 0|12 |3]4|5]|6/|7]|8|9]1011]12
r| Ty | Ty | T3 [T | Ty | Ty | Ty |3 |3 | Ty |y | Ty | T3

We speculate that the pattern is of period 10 and repeats indefinitely.

The quantum magnetization curve for 5 atoms shows steps whose width decreases as
the applied field increases, whereas the classical curve is a straight line. As § increases the
variation in the width of the steps becomes less and the quantum curve tends to a straight line
classical curve.

This difference between the quantum and classical behaviour is known for long chains
of spin—% atoms [6]. For a ring of spin—% atoms the curve of NMS becomes a smooth curve
with monotonically increasing gradient as N — oo. The classical curve (S — o00) remains
a straight line for all N. The smooth quantum curve would tend to the classical curve as S is
increased from % to oo.

6. Tetrahedron

The group is the tetrahedral group 7, with 24 elements. There are [5] two one-dimensional
representations I'y and I';, one two-dimensional representation '3 and two three-dimensional
representations I'y and T's.

Each atom has three neighbours and the Hamiltonian is

H==51-5+81+53+8+54+85)-83+53-54+54-5 — B(s{ +55+5]+5])

1 LR R T 7, 2
= 5[(s1 +82+83+84)" — 8] — 85 — 53 — 55] — B(s] + 55 +55 +55)

= 1[t* —4S(S+ )] — Br* = L{T(T +1) —45(S+ )] — BM (6)
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where t = s| + Sp + 83 + 84 is the total spin and 0 < T < 4S. The lowest state for a given M
has T = M.

For a given M the basis states of the form |a, b, ¢, d), have a + b + ¢ + d = M which
defines a ‘plane’ in 4 D space which intersects a hypercube definedby —S < a, b, ¢, d < S. For
2S < M < 4S5 the intersection is a tetrahedron with four vertices given by (S, S, S, M — 35)
and its permutations. For 0 < M < 28§ the intersection is a truncated tetrahedron with 12
vertices given by (S, S, —S, M —S) and its permutations, which becomes a regular octahedron
atM = 0.

We have not analysed this situation in the same way as for the triangle, but the numerical
results for § < % show the following pattern.

For 28 < M < 4S with M = 4S — n the representations » are

2I' 4203 + Ty + 2T
F] + F3 + 2F4 +4F5

For 0 < M < 2§ we do not have sufficient numerical data to identify a regular pattern.
Note, however, that the basis state |a, b, ¢, d), with a # b # ¢ # d and its 24 permutations
form a set of states with symmetries (the regular representation of T;)

Z:F1+F2+2F3+3F4+3F5.

For large S this combination will dominate the overall symmetry of the massively degenerate
steps in the magnetization curve. Again we note the connection of the massive degeneracy and
the dominance of the regular representation to the factorizability of the Hamiltonian, reflecting
the presence of hidden symmetry. In both this case and the triangle we also note that each spin
is a nearest neighbour of every other spin.

n r

0 T,

1 Ts

2 Fl +F3+F5
3 F1 +F4+2F5
4

5

7. Octahedron

The group is O, with 48 elements. There are [5] four irreducible representations, I';*, T'p*,
'y~ and ', ™, of dimension 1, two, I'3™ and '3, of dimension 2, and four, I'4;*, I's*, 'y~ and
I's™, of dimension 3.
The Hamiltonian is
H= (S] +82)'(S3+84+$5+86)+S3 + 85+ 85°84+84°S8¢+ S S3
—B(si+s5S+si+si+si+s) =t ta+tr-t3+ts- bt — Bt +15 +15)

@)
where t| = s| + 82, t, = s3 + 84 and t3 = ss5 + s¢. This is not exactly the Hamiltonian of the
triangle discussed earlier because the lengths of the three spins do not have to be equal. Hence

H=1t+t+t3)> —t] — 85 — 3] — Bt +15 + 1)
= 1[t —t] —t5 — t3] — Br*
= %[T(T +1) =T (T1+1) —Th(TL+1) —T5(Ts +1)] — BM ®)
where t = t| + t, + t3 is the total spin. T, T7, T> and T3 are the lengths of the combined spins
t, t1, ty and t3, respectively, so that 0 < Ty, T, T3 < 28. T satisfies Tyin < T < T1 + Th + T3,

where T, is the smallest length that can be formed from the three spins ¢, ¢, and t3. M = ¢*
so—-T <MKT.
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From equation (8) it is clear that the lowest energy for a given M will be obtained by
choosing the largest values for T}, 7> and T3, namely 71 = T, = T3 = 2S. With this choice
the Hamiltonian becomes the same as for the triangle and so the earlier results will apply,
replacing S by 2S.

The symmetry of the relevant states for the triangle are in terms of the irreducible
representations of C3,. The relation between these and the corresponding states of the
octahedron is similar to that between the pair and the four-atom ring. In this case we find
the equivalence of the elements is as follows:

Oy Csy

E + 3C2m — E
8C; — 2C3
6C2p +6Cy, — 3C,

and thus I’} (0y,) — Ti(Csy) fori = 1,2, 3. Our numerical studies confirm that the relevant
states of the octahedron have symmetries in which the I', of Cj, is replaced by I'} of O;,. Of
course, states with symmetry I';” do occur but these are never the lowest for a given M and so
do not have any effect on the zero-temperature magnetization curve. If the temperature was
not zero then they would have to be taken into account.

The cycles of length 3 or 6 seen for the triangle are seen in exactly the same way for the
octahedron as for the triangle.

8. FCC-12,1C0O-12, FCC-13 and ICO-13 clusters

These large clusters were investigated in the earlier paper. The ICO-12 is particularly
interesting because there appear to be two distinct regions of the magnetization curve. We
have obtained the symmetries of the low-lying states for S = % only. For FCC-12 the group
is Oy, and the symmetries r are

M| 0O 1 2 3 4 5 6
r O | Ds™ | Dy | Oy | Dy + 0t [ Ty P+ s | ITYF

For ICO-12 the group is I; and the symmetries are

M| 0O 1 2 3 4 5 6
r F3+ F5_ F4_ F5+ F3_ F1+ F1+

For § = 1 we obtained only a few results for high M, and found that the symmetries of
the states with M = 125 — n forn = 0, 1, 2, 3, 4 were the same as for S = %

Clusters with an additional central atom, FCC-13 and ICO-13, show exactly the same
symmetries except for one or more additional steps with I';* symmetry at large M. The
number of these additional steps is 2.5.

The number of steps obtained for all these clusters is too small to determine a pattern
which would apply at general S and would enable symmetry of the different regions of the
classical FCC-12, ICO-12, FCC-13 or ICO-13 curves to be described.

9. Conclusion

For quantum spin systems with small numbers of spins arranged in clusters with high
symmetry, it is possible to categorize the ground state wavefunction in a magnetic field in
terms of the irreducible representations of the space group of the cluster. We have shown,
for certain of these clusters, how to obtain the complete decomposition of the states in terms



54 J B Parkinson et al

of these representations for arbitrary spin S. Sometimes a single irreducible representation is
present, although of course if this has dimension greater than one there will be degeneracy.
Sometimes several representations are present, giving additional degeneracy. Sometimes
massive degeneracy occurs, of the order of NS, due to the fact that some representations
occur many times, although some do not occur at all.

The fact that we have results for arbitrary S, and assuming that the limiting process S — oo
is smooth, means that we should be able to describe the symmetry of the classical ground states
in a similar way to the quantum.

We find that, even if the quantum states belong to a single irreducible representation, the
representation varies in a systematic way as the applied field changes so that the classical
system cannot normally be described by a single representation. Clearly this is even
more true in the case when a quantum system has degeneracies between states of different
irreducible representations. For some clusters the dominant representation is the combination
of irreducible representations known as the regular representation. The numerical results
indicate that this is the case if the topology of the cluster is such that every spin is connected
to all other spins.

Typically in the quantum case we find that there is a well defined repeating cycle of
irreducible representations as a function of B. This suggests that the symmetry of the classical
state should be described as a combination of all the representations which are present in the
cycle. For example, for the two-atom pair the classical state should be described by I'y + I',.
For the triangle and octahedron we find two different regions in which the periodicity of the
cycle of representations on the steps of the magnetization curve is different. However, in both
regions the dominant linear combination of representations is the regular representation and
the classical curve is a straight line which is not divided into two regions of different symmetry.

Unfortunately we were not able to fully analyse any system in which the classical
magnetization curve M = M (B) has two distinct regions of different symmetry, e.g. ICO-12.
We expect that in the quantum case, for general S, there would be two regions with different
cycles and the transition point between the two cycles would tend to the classical crossover
point in the limit § — oo, characterized by a discontinuity in the gradient of the magnetization
curve.

Finally we note that it would be interesting to study other types of exchange interaction
and possibly other single-atom terms in the Hamiltonian, in the hope that they might shed
further light on the question of the relation between the quantum and classical symmetries.
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Appendix A. Lowest states for a triangle of general spin

In this appendix we give the details of the symmetries of the lowest states for a triangle of
spin-S atoms. As noted, there are two distinct regions depending whether M is less than or
greater than S.

First the region M < S. The plane area bounded by the six corners (S, —S, M) and its
permutations contains a total of

Ny =3S(S+1)—M?*+1

states. Let the number of states of the form (a, a, a) be N3, of the form (a, a, b) with b # a
(and permutations) be N,, and of the form (a, b, ¢) with a # b # ¢ be N;. Clearly N3 = 1 if

2M is divisible by 3 and N3 = 0 otherwise. For states of the form (a, a, b) we have 2a+b = M
and —S < b < Sso
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S—M S+M
and A, = 7

The minimum value of @ will be equal to —A; if S — M is even and the maximum will be
equal to A, if S+ M is even. If S is an integer and both S — M and S + M are even then the
number of values of a is N, = S + 1. If S is an integer and both S — M and S + M are odd
then N, = S. If S is an integer plus % then one of S — M and S + M is even and one odd. In

this case N, is S + % States of the form (a, a, b) have three permutations unless » = a so
Ny = 3(N, — N3).

—A; <a< A where A =

Finally
Ny = Nr — N, — Ns.
For integer S the alternation between even and odd values of N, for successive values of M

and the cycle of 3 in N3 results in a cycle of 6 overall. For integer plus % the cycle is of length 3.
The symmetries of the states for a given M are given by

Xpy = N3(F1) + %Nz(rl + Fg) + %Nl([‘l +1 +2F3).
The symmetries of the lowest states of a given M are those for which 7 = M and these are
given by Xy — Xp+1. The final result is
For S = integer +%:

M=3k+} : T\ +T3+kZ

M=3k+3: T +T,+T3+kZ

M=3k+3: (k+1)Z
where 0 < k < S/3, Z=T1+T,+2I;.
For § = even integer:
M = 6k 1 2kZ+ T
M=6k+1 : 2kZ+T,+T1;
M=06k+2 : 2kZ+T|+2I3
M=06k+3 : 2kZ+T+2I,+2I'3
M=06k+4 : 2kZ +2T"1 + T, +3I'3
M=06k+5 : 2kZ+T| +2I'; +4I;.
For S = odd integer the result is the same as for even integers except that I'; and I'; are
interchanged.
Now consider the region S > M > 3S. The plane region bounded by the corners
(S, S, M — 25) and its permutations contains a total of
Ny =33S—M+1)3S—M+2)
states. Again N3 = 1 if 2M is divisible by 3 and N3 = 0 otherwise.
States of the form (a, a, b) occur for M — 25 < b < S and so
M-S

<a<S.

Hence, N, = 13S — M)+ 1if M — Sisevenand N, = (35 — M) if M — S is odd.
Here there is a cycle of length 6 for all S. The symmetries are

M =3S — 6k D kZ+T

M=3S—6k—1:kZ+T;

M=385—6k—2 : kZ+T1+T};

M=38—6k—3 : kZ+T1+T»+1;

M=35—6k—4 : kZ+T+2I3

M=35—-6k—-5: (k+1)Z.
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Appendix B. S = 1/2 octahedron symmetry

In this section we present a full symmetry analysis of the S = 1/2 octahedron.
The character table of the octahedral group O, is

X X
X =X
where yx is the table without inversion, i.e. pure rotations:

Class i E C; Com Cap Cum
Rot. axis (111) (100) (110) (100)
n 18 3 6 6
_ [T 1 1 1 1
=0 11 1 -1 -1
ri 2 -1 2 0 0
r} 30 -1 -1 1
r: 30 -1 1 -1

Here n; is the number of elements in class i. The five irreducible representations in the lower
half of the table are labelled I'}, I'; , 'y , I’y and I's .

The Hamiltonian is equation (8). We use the usual Ising-like basis with states of the form
|ayarazagasag), where a; is either + or — and refers to the ith site, with the sites labelled as
shown in figure 1. We choose axes so that sites 1 and 2 are (1, 0, 0) and (—1, 0, 0), sites 3 and
4 are at (0, 1,0) and (0, —1, 0) and sites 5 and 6 are at (0, 0, 1) and (0, 0, —1). This choice
is for convenience and it is not necessary for the axes of the octahedron to be aligned with the
magnetic field.

M is a good quantum number so we can consider each M separately. We shall also
consider B = 0 initially since the effect of the magnetic field is merely to lift the degeneracy
without altering the eigenstates.

For M = 3 there is only one basis state, | ++++++), which must therefore be an eigenstate
with energy 3. This state is invariant under all group operations so the ten character columns
associated with each class all contain 1 and the symmetry is I'}.

For M = 2 there are 6 basis states of the form | — + + + + +) where the — may be in each
of the six positions. The ten characters for this group of states are

6 02 0 2 00 4 20

Using the rules for character decomposition, or by inspection, this gives I'T + 'y + T, .

Since T is also a good quantum number in the absence of a magnetic field, the states with
M = 2 must include states with 7 = 3 and 2. For T = 3 the states are obtained by operating
on the M = 3 state with the lowering operator

= Z s
1

which does not alter the symmetry. Consequently the I'{ state has T = 3 while the five states
with '} + T, have T = 2.

For M = 1 there are 15 basis states, each with 2 minuses and 4 pluses. Three states (type
A) have the two minuses at opposite vertices, e.g. | — — + + + +), while the remaining twelve
(type B) have minuses on adjacent sites along one edge, e.g. | — ++ — ++). The rotations and
inversion do not mix these two types so we can consider their symmetry separately. For the
first three the characters are

303 1130311
giving I'T + T'5.
For the twelve of type B the characters are
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2 0 02 0 0 0 4 2 0
giving T + T+, +TZ+T5.
Of these twelve states, six have T > 1 with the symmetries obtained above, leaving the
six states with 7' = 1 as having irreducible representations I'y + I'y + I'Z + T'5 .
Finally we consider M = 0. There are 20 states in the basis. Eight states (type A) have
the three minus spins at the three corners of one face, e.g. | — ++ — — +), and twelve (type B)
have three minuses on two perpendicular joined edges, e.g. | — — — ++ +).
The characters for the first type are
8 2000 0 0 O0 4 0
giving 't + T, + T, + T2,
While for the second type the characters are
12 0 4 000 0 400
giving I'T + T3 +2I07 + T, +T'5.
Subtracting states with 7 > 0 gives the five states with 7 = 0 as having irreducible
representations I'y + ', + T,
We now determine to which representation each of the possible energies correspond.
For M = 3 the only state has energy 3 and symmetry I'}.
As already noted, the Hamiltonian can be written in terms of ¢, ¢,, t3 and T'. A complete
set of states for the pair £; = s; + s, are the states of the form |77, £]) given by

[1,1) = | ++)
1
1,0) = —— (|4 =) +] —+))
7
L —1)=|— ) B.1)
0,0) = \%(|+—> ).

As can be seen the three states with 77 = 1 are unchanged under inversion and have positive
parity while the state with 77 = 0 changes sign under inversion and so has negative parity.
We now draw up a table of all possible states of the octahedron.

M| T |Ty T, T |Energy | Parity | Deg. | Rep.
31371 1 1 3 + 1 Iy
21311 1 1 3 + 1 Iy
211 1 1 0 + 2 Iy
1 1 0 1 — 3 ry
1{3]1 1 1 3 + 1 Iy
2101 1 1 0 + 2 Iy
1 1 0 1 — 3 ry
1f1 1 1] =2 + 3 |I'T+I7
1 1 0] -1 — 3 Iy
1 0 O 0 + 3 Iy
013]1 1 1 3 + 1 Iy
211 1 1 0 + 2 ry
1 1 0 1 — 3 ry
{1 1 1] =2 + 3 |T7+T3
1 1 1] -1 - 3 ry
1 1 1 0 + 3 Iy
o1 1 1] =3 + 1 I
1 1 0] -2 - 3 ry
0 0 O 0 — 1 ry
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All the representations in the above table can be deduced from knowledge of the parity
and the degeneracy of the states together with the list of representations for each M obtained
above. The only exception to this are the two positive parity states with 7 = 1 and M = 1,
both of which have degeneracy 3.

To determine these we consider the three states with T = 1, M = 1 which have T} = 1,
T, = T; = 0 and permutations. A basis for these is the set

1b1) =11, 1)1210, 0)34]0, 0)s¢
|b2) =10, 0)12]1, 1)34]0, 0)s6 (B.2)
|b3) =10, 0)12]0, 0)34]1, 1)s6

using the notation of equation (B.1). Under the pure rotations of the group the characters of
this set of three basis states are

30 -1 1 -1

so these must belong to I'}.

An alternative method of obtaining these results is to obtain explicit expressions for the
eigenstates in terms of basis states similar to those of equation (B.2). For S = 1/2 this can
be done analytically. The symmetry can then be determined directly by studying how the
eigenstates transform under the group operations.

For larger S the eigenstates have to be determined numerically and for the octahedron this
can be done for § < 4 without much difficulty. However, as noted earlier, only the lowest
states for each M are needed for the T = 0 magnetization curve and these can be determined
using the method of appendix A.
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